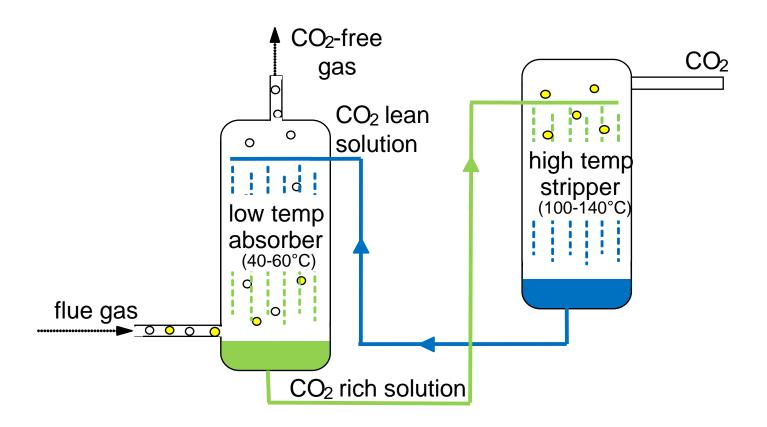
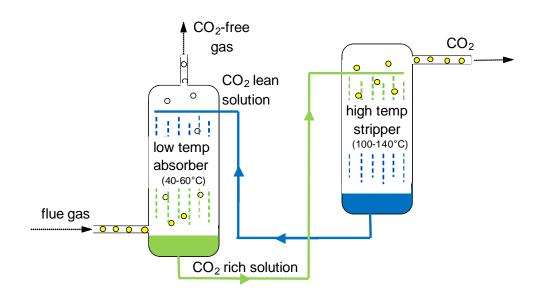


Overview of the carbon dioxide PCC process

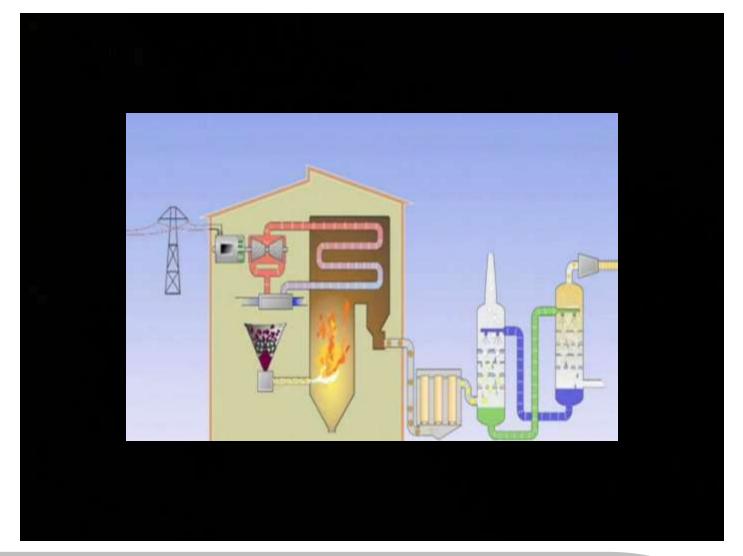

- The generic process flow diagram
- Reactive chemical absorption
- Alkanolamines and amine absorbents
- Ammonia
- Amino acids
- Carbonate solutions and slurries

The generic process flow diagram

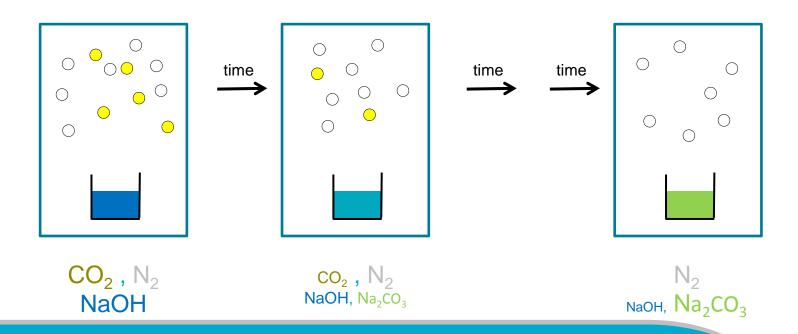


The generic process flow diagram

- Desirable properties of an absorbing solution:
 - Fast reactions allow small absorber and stripper columns.
 - High cyclic capacity minimises the amount solvent circulating.
 - Low energy requirement for the cyclic process.



The generic process flow diagram



Reactive chemical absorption: WHY REACTIVE CHEMICAL ABSORPTION IS USED FOR PCC

Absorption of CO₂ is very simple: upon exposure of a CO₂ containing gas to a solution of NaOH, the solution will absorb the CO₂ and turn into a solution of Na₂CO₃.

Reactive chemical absorption: WHY REACTIVE CHEMICAL ABSORPTION IS USED FOR PCC

 The problem is that the production of NaOH requires energy. In fact, the production of NaOH results in the output of more CO₂ than can be absorbed in this process.

- There are two options:
 - The absorbing agent needs to be abundant/cheap
 - The process needs to be cyclic (NaOH process is not)

Reactive chemical absorption: WHY REACTIVE CHEMICAL ABSORPTION IS **USED FOR PCC**

$$CO_2 + X \longrightarrow CO_2 \cdot X$$

- The interaction of CO₂ with a reagent X has to be reversible.
 - The reagent X has to react exclusively with CO₂, thus separating it from the other flue gas constituents
 - later the formation of the product is reversed and CO₂ is released

$$CO_2 + X \rightleftharpoons CO_2 \cdot X$$

- Favourable properties of X:
 - reacts fast
 - large change in equilibrium position with swing
 - low energy requirements for swing
 - large cyclic capacity
 - good stability
 - low volatility
 - cheap
 - environmentally benign

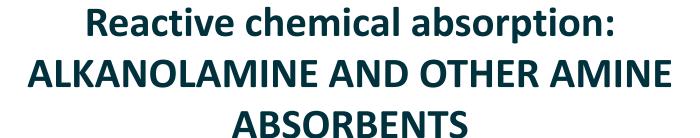
Reactive chemical absorption: WHY REACTIVE CHEMICAL ABSORPTION IS **USED FOR PCC**

$$CO_2 + X \rightleftharpoons CO_2 \cdot X$$

Examples of different types of X:

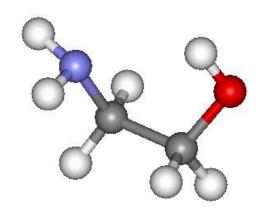
•
$$CO_2 + H_2O \longleftrightarrow H_2CO_3$$

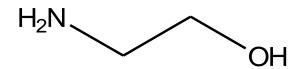
 $H_2CO_3 + B \longleftrightarrow BH^+ + HCO_3^ H_2CO_3$ acts as an acid, reacting with a base B



$$CO_2 + X \longrightarrow CO_2 \cdot X$$

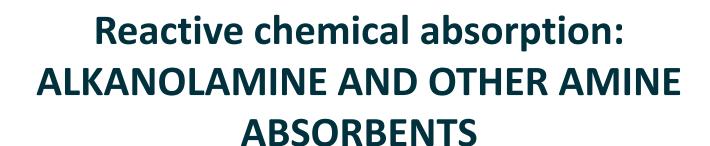
- The most important compounds X in PCC:
 - alkanolamines
 - other amines
 - ammonia
 - amino acids
 - carbonates



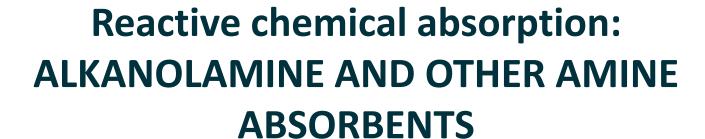


Monoethanolamine, MEA

- advantages:
 - well established absorbent for CO2, used in natural gas sweetening (removal of CO2)
 - cheap
 - the standard for all other absorbents
- disadvantages:
 - limited chemical stability
 - volatile
 - high desorption energy requirement

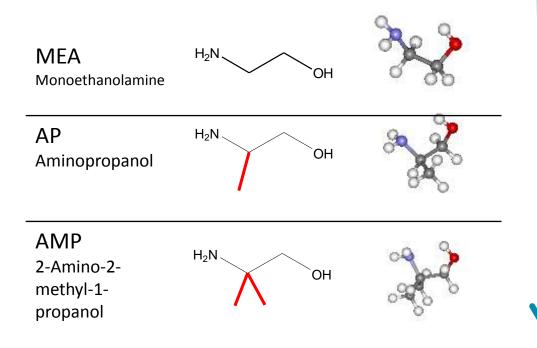


H₂N-CH₂-CH₂-CH₂OH



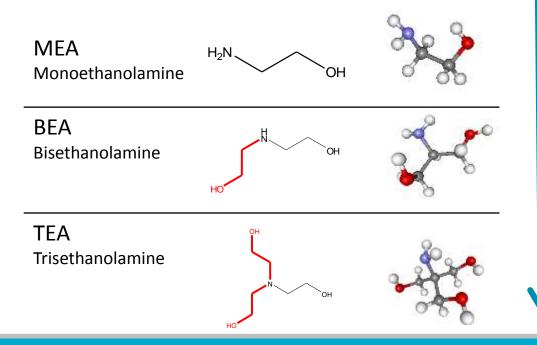
modifications on MEA

Modification	Advantages	Disadvantages
Additional steric hindrance	less carbamatelower volatility	lower solubilityslower reaction
Additional alcohol groups	 lower volatility 	• increased molecular weight
Cyclic amines	• fast reactions	carbamate formation
Tertiary amines	• no carbamate	lower solubilityslower reaction



steric hindrance

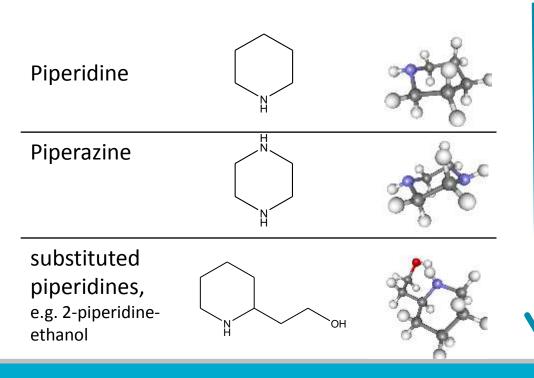
- Increasing steric hindrance
- Less carbamate
- Lower volatility
- Slower reactions



Reactive chemical absorption: **ALKANOLAMINE AND OTHER AMINE ABSORBENTS**

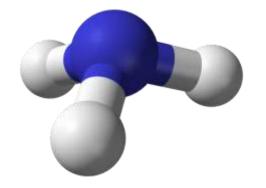
increasing numbers of alcohol groups

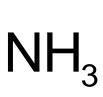
- Increasing steric hindrance
- Less carbamate
- Lower volatility
- Slower reactions

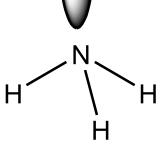


cyclic amines

- fast reactions
- more carbonate




Reactive chemical absorption: AMMONIA



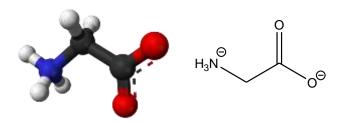
ammonia

- advantages:
 - fast reactions
 - o cheap
 - o 'indestructible'
- disadvantages:
 - very high volatility
 - low temps required so slow reactivity

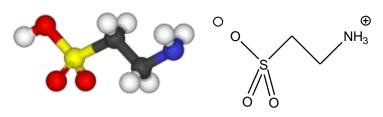
Reactive chemical absorption: **AMINO ACIDS**

amino acids

o natural: glycine, alanine, ...


o synthetic: taurine

advantages:

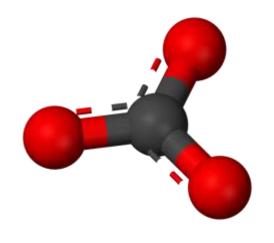

- always ionic, thus very low volatility
- o the neutral molecule at intermediate pH is a zwitter ion

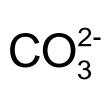
disadvantages:

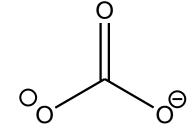
- o expensive
- limited solubility

glycine, written as the zwitter ion

taurine, written as zwitter ion on the right




Reactive chemical absorption: **CARBONATE SOLUTIONS AND SLURRIES**



carbonate

- advantages:
 - very cheap
 - o indestructible
 - no volatility
- disadvantages:
 - slow reactivity
 - limited cyclic capacity

Acknowledgements

The authors wish to acknowledge financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low

Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.

ENERGY TECHNOLOGY

www.csiro.au

