



### The chemical process

- Carbon dioxide absorption into water
- Carbon dioxide absorption into unreactive bases (tertiary amines, other bases)
- Carbon dioxide absorption into reactive solutions (primary and secondary amines)
- The complete mechanism of carbon dioxide absorption into an aqueous amine solution
- Amino acids their special properties (ionised)
- Amine mixtures
- Combining diffusion and chemical reaction enhanced mass transfer



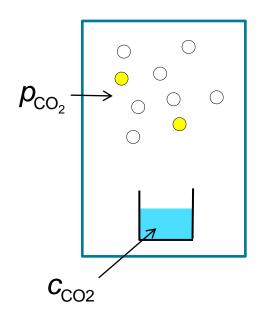






- The first step of PCC is the transfer of CO<sub>2</sub> from the gas phase into the aqueous solution.
- There are two important aspects:
  - kinetics
    - difficult to quantify
    - strongly depends on column design and packing
  - equilibrium
    - Henry's law








"At a constant temperature, the amount of a given gas that dissolves in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid."

$$p_{\text{CO}_2} = k_{h,\text{CO}2} \times c_{\text{CO}2}$$

- $\circ$   $c_{\text{CO}2}$  concentration, molar, (other concentrations can be used, e.g. molal, mole fraction)
- $\circ$   $k_{h,CO2}$  Henry's constant
- p<sub>CO2</sub> partial pressure of CO<sub>2</sub> in atmosphere



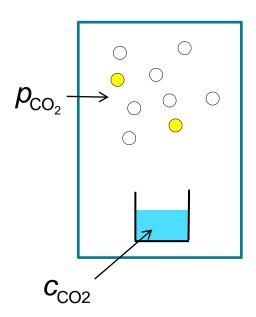


3 | Chemical Process





It is important to use the correct version/units for the equation! A few examples:

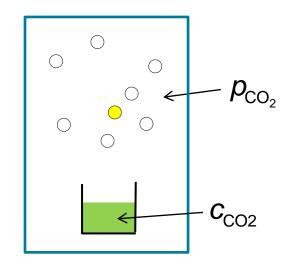

$$k_{h,pc} = \frac{p}{c} = 29.14 \frac{\text{L atm}}{\text{mol}}$$

$$k_{h,px} = \frac{p}{x} = 0.163 \times 10^4 \text{ atm}$$

$$k_{h,cc} = \frac{c_{aq}}{c_{gas}} = 0.8317$$

p = partial pressure, in atm c = concentration, in mol/L

x =mole fraction, dimensionless





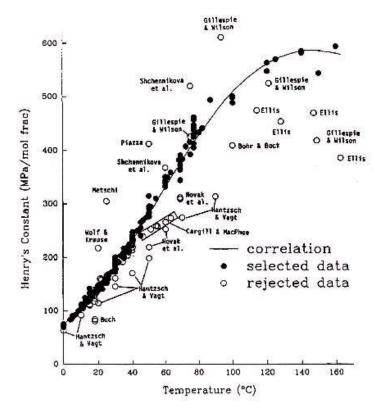



Henry's constant is unaffected by any process that involves the CO<sub>2</sub> in the aqueous solution; e.g. in amine solutions most of the CO<sub>2</sub> is transformed into bicarbonate and carbamate. the free  $c_{\rm CO2,aq}$  is very small and thus the partial pressure  $p_{CO2}$  at equilibrium is also very small, the ratio is constant it is  $k_{h,CO2}$ 

Even over a solution of NaOH, at equilibrium there are small amounts of CO<sub>2</sub> in the solution and in the gas phase.



$$co_2$$
,  $N_2$   
NaOH,  $Na_2CO_3$ 








Henry's constant is temperature dependent, its value decreases with increasing temperature. This helps to release the CO<sub>2</sub> in the stripper column.

The law is only strictly valid for ideal solutions, e.g. deviations for highly concentrated amine solutions can be significant.



John J. Carroll and Alan E. Mather Journal of SolutionChemistry, 21, (1992) 607-621





#### Carbon dioxide absorption into water



Once CO<sub>2</sub> is dissolved in water, several reactions occur simultaneously:

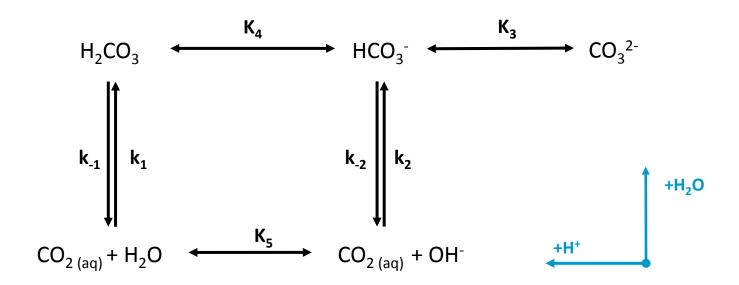
$$CO_2 + H_2O \longrightarrow H_2CO_3$$

$$CO_2 + OH^- \longleftrightarrow HCO_3^-$$

and subsequent protonation
 equilibria and autoprotolysis of water

$$\begin{aligned} & \mathsf{H}^{\scriptscriptstyle{+}} + \mathsf{HCO}_{3}^{\scriptscriptstyle{-}} \longleftrightarrow & \mathsf{H}_{2}\mathsf{CO}_{3} \\ & \mathsf{H}^{\scriptscriptstyle{+}} + \mathsf{CO}_{3}^{2\scriptscriptstyle{-}} \longleftrightarrow & \mathsf{HCO}_{3}^{\scriptscriptstyle{-}} \\ & \mathsf{H}^{\scriptscriptstyle{+}} + \mathsf{OH}^{\scriptscriptstyle{-}} \longleftrightarrow & \mathsf{H}_{2}\mathsf{O} \end{aligned}$$

Note, we use  $\iff$  for slow reversible reactions and  $\iff$  for fast (instantaneous) equilibria.






# Reactions of carbon dioxide absorption in water



It is instructive to graphically represent the reaction scheme for the reactions of CO<sub>2</sub> in aqueous solution:





### Reactions of carbon dioxide absorption

in water



The values for all rate and equilibrium constants are fundamental for any PCC process:

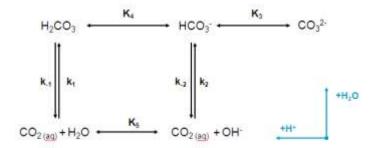



TABLE 1: Calculated Rate and Equilibrium Constants in the Hydration of  $CO_2(aq)$  and Dehydration of Carbonic Acid at Various Temperatures

| T (°C) | $k_1 \; (\mathrm{M}^{-1} \; \mathrm{s}^{-1})$ | $k_1^*$ (s <sup>-1</sup> ) | $k_{-1} \; ({\rm s}^{-1})$ | $k_2 \; (\mathrm{M}^{-1} \; \mathrm{s}^{-1})$ | $k_{-2} (s^{-1})$        | $K_1 \ ({ m M}^{-1})$   | $K_1^*$                  | $K_2 (\mathrm{M}^{-1})$ | $pK_{a2}$ |
|--------|-----------------------------------------------|----------------------------|----------------------------|-----------------------------------------------|--------------------------|-------------------------|--------------------------|-------------------------|-----------|
| 6.6    | $8(2) \times 10^{-5}$                         | $4.5(9) \times 10^{-3}$    | 4.2(1)                     | $2.3(1) \times 10^{3}$                        | $1.54(4) \times 10^{-5}$ | $1.9(4) \times 10^{-5}$ | $1.1(2) \times 10^{-3}$  | $15.1(1) \times 10^{7}$ | 3.54(9)   |
| 16.0   | $2.7(4) \times 10^{-4}$                       | $15(2) \times 10^{-3}$     | 10.3(3)                    | $4.2(3) \times 10^{3}$                        | $5.6(3) \times 10^{-5}$  | $2.6(4) \times 10^{-5}$ |                          | $7.59(1) \times 10^{7}$ |           |
| 25.0   | $6.6(4) \times 10^{-4}$                       | $37(2) \times 10^{-3}$     | 24.8(4)                    | $12.1(4) \times 10^{3}$                       |                          | $2.7(2) \times 10^{-5}$ |                          |                         |           |
| 34.0   | $2.0(1) \times 10^{-3}$                       | $112(4) \times 10^{-3}$    | 60(2)                      | $25.0(2) \times 10^{3}$                       |                          |                         | $1.86(5) \times 10^{-3}$ |                         |           |
| 42.8   | $4.2(1) \times 10^{-3}$                       | $236(7) \times 10^{-3}$    | 139(3)                     | $48.8(8) \times 10^{3}$                       | $381(7) \times 10^{-5}$  | $3.0(1) \times 10^{-5}$ | $1.7(1) \times 10^{-3}$  | $1.28(1) \times 10^{7}$ | 3.52(2)   |

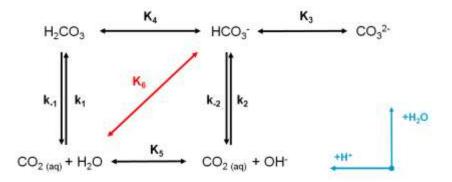
 $TABLE~2;~Calculated~Activation~Parameters~and~Enthalpies~and~Entropies~of~Reaction~for~the~Hydration~of~CO_2(aq)~and~Dehydration~of~Carbonic~Acid$ 

|                                                                          | Arrhenius                   |                         | E                                            | yring                                             | van't Hoff                                          |                                                            |
|--------------------------------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
|                                                                          | $E_a \text{ (kJ mol}^{-1})$ | A                       | $\Delta H^{\dagger}$ (kJ mol <sup>-1</sup> ) | $\Delta S^{4} (\text{J mol}^{-1} \text{ K}^{-1})$ | $\Delta H^{\emptyset} \text{ (kJ mol}^{-1}\text{)}$ | $\Delta S^{\emptyset} (J \text{ mol}^{-1} \text{ K}^{-1})$ |
| $\mathrm{CO}_2 \overset{k_1}{\longrightarrow} \mathrm{H}_2\mathrm{CO}_3$ | 81(2)                       | $1.2(8) \times 10^{11}$ | 79(2)                                        | -41(6)                                            | 10(2)                                               | -55(7)                                                     |
| $H_2CO_3 \xrightarrow{k_{-1}} CO_2$                                      | 71.6(6)                     | $9(2)\times 10^{13}$    | 69.1(6)                                      | 14(2)                                             |                                                     |                                                            |
| $CO_2 + OH^- \xrightarrow{k_2} HCO_3^-$                                  | 64(1)                       | $2(1)\times 10^{14}$    | 62(1)                                        | 40(4)                                             | -50(1)                                              | -23(5)                                                     |
| $HCO_3^- \xrightarrow{k_{-2}} CO_2 + OH^-$                               | 114(2)                      | $3(3) \times 10^{16}$   | 112(2)                                       | 63(7)                                             |                                                     |                                                            |

Xiaoguang Wang, William Conway, Robert Burns, Nichola McCann, and Marcel Maeder J. *Phys. Chem. A* (2010) **114**, 1734–1740






# Reactions of carbon dioxide absorption in water



Carbonic acid is always only a minor species and thus difficult to investigate. It is common to combine its formation and deprotonation to result in a well defined equilibrium

$$CO_2 + H_2O \xrightarrow{\kappa_6} HCO_3 + H^+$$

$$K_6 = \frac{k_1}{k_{-1} K_4}$$





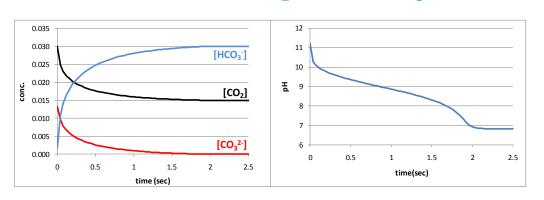


#### Reactions of carbon dioxide absorption in water



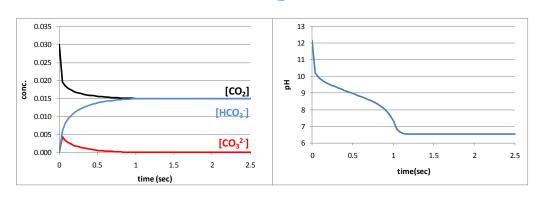
Knowing all relevant rate and equilibrium constants, it is possible to compute all concentrations as a function of time for a given set of initial conditions

Coupling these calculations with mass transfer and other engineering aspects of the solutions in absorber and stripper columns allows a complete and accurate analysis and optimisation of the PCC process.






# Reactions of carbon dioxide absorption in water




#### reaction of 30mM CO<sub>2</sub> /15mM CO<sub>3</sub><sup>2-</sup>



CO<sub>2</sub> in a solution of CO<sub>3</sub><sup>2-</sup> or OH<sup>-</sup> reacts to bicarbonate HCO<sub>3</sub><sup>-</sup>, accompanied by a pH drop.

#### reaction of 30mM CO<sub>2</sub> /15mM OH<sup>-</sup>



For the given concentrations the reaction with hydroxide is approximately twice as fast.

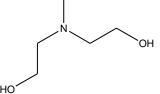




#### Carbon dioxide absorption into unreactive bases



Any other base that drives the absorption of CO<sub>2</sub> by deprotonation of the carbonic acid can be used. Typical examples are the tertiary and sterically hindered amines:


#### **AMP**

2-amino-2-methylpropanol



#### **MDFA**

methyldiethanolamine





#### **DMEA**

**DimethylMEA** 







### Carbon dioxide absorption into unreactive bases

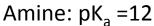


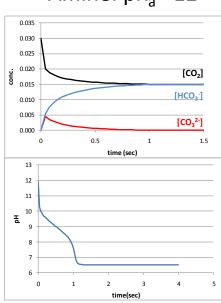
The reaction mechanism for all these amines, A, is essentially identical, the only difference between them is the basicity:

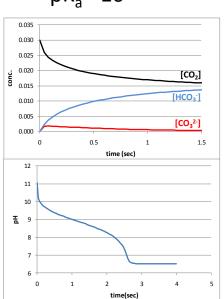
$$CO_2 + H_2O \longrightarrow H_2CO_3$$
  
 $H_2CO_3 + A \longrightarrow HCO_3^- + AH^+$ 

A crucial aspect of the above process is that 1 mole of amine is required for the absorption of one 1 mole of CO<sub>2</sub>.

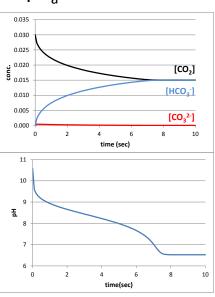
1:1 ratio!





### The role of the base on pH and proton removal




Based on all known rate and equilibrium constants we can model the effect of the basicity of the amine on the kinetics of the reaction of CO<sub>2</sub>







$$pK_a = 9$$

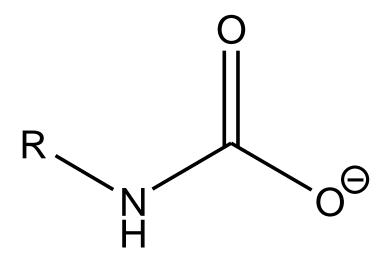


The higher the basicity the faster the reaction, this is the result of higher pH and thus higher [OH-] which reacts faster than H<sub>2</sub>O with CO<sub>2</sub>.








In addition to the reactions of CO<sub>2</sub> with water and hydroxide, CO<sub>2</sub> can also react with amines to form the so-called carbamic acids which immediately deprotonate to the carbamates:







Carbamic acids are the amides of carbonic acid; the structure of the corresponding carbamate is shown below









The carbamate forming reaction of CO<sub>2</sub> has two significant consequences, a positive and a negative one:

- (+) at relevant pH, the reaction of CO<sub>2</sub> with amines are often significantly faster than with water and hydroxide. Faster reactions results in shorter absorption time and thus smaller absorber columns
- (-) the primary formation of the carbamic acid requires one amine, the release of its proton results in the protonation of a second amine; thus two amines are required for the absorption of one molecule of CO<sub>2</sub>.







(-) 1:2 ratio:

$$RNH_{2} + CO_{2} \longleftrightarrow RHNCOOH$$

$$RHNCOOH \longleftrightarrow RHNCOO^{-} + H^{+}$$

$$RNH_{2} + H^{+} \longleftrightarrow RNH_{3}^{+}$$

$$2 RNH_{2} + CO_{2} \longleftrightarrow RHNCOO^{-} + RNH_{3}^{+}$$

Thus for a certain amount (moles) of amine only half the amount (moles) of  $CO_2$  can be absorbed.

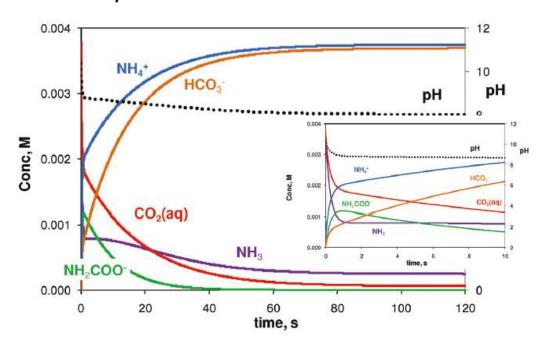






The carbamate forming reaction of CO<sub>2</sub> has two significant consequences, a positive and a negative one:

The quantitative analysis of the relative merit of the fast reaction and disadvantage of the 1:2 ratio is not easy, only careful modeling and experimentation can resolve that question.


This is particularly the case if the complete PCC process is to be optimised, taking into account capital investment, consumables and energy consumption.







Ammonia shows a very interesting behavior; under certain conditions it forms the carbamate (green concentration profile) in a very fast reaction (≈1 sec), however, the equilibrium position (after 40 sec) is different with essentially no carbamate formation.



Xiaoguang Wang, William Conway, Debra Fernandes, Geoffrey Lawrance, Robert Burns, Graeme Puxty, Marcel Maeder J. Phys. Chem. A, **115** (2011) 6405-12





### **Polyamines**



An obvious way of improving the ratio of  $CO_2$  absorbed per amine is to use multifunctional amines, molecules that incorporate more than on amine group.

As non-reactive amines they could absorb two protons

RHNCH<sub>2</sub>CH<sub>2</sub>NRH + 2 CO<sub>2</sub> 
$$\longleftrightarrow$$
 2 HCO<sub>3</sub> + RH<sub>2</sub>N<sup>+</sup>CH<sub>2</sub>CH<sub>2</sub>NRH<sub>2</sub><sup>+</sup>

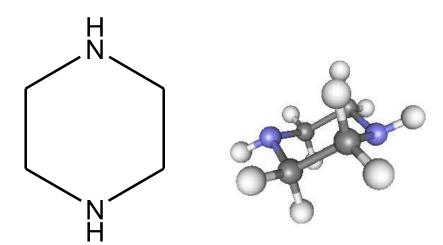
As a reactive amine it could absorb both a CO<sub>2</sub> and the released proton:

resulting in a 1:1 stoichiometry





### **Polyamines**



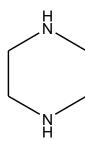

The two most important di-amines

ethylenediamine

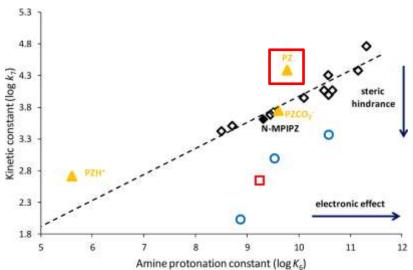


and piperazine









#### **Piperazine**



In addition to the di-amine character, piperazine has the advantage of reacting very fast with CO<sub>2</sub> in the carbamate forming reaction.



The figure displays reaction rate constants for the carbamate forming reaction of several amines as a function of their basicity. In spite of not being a strong base piperazine features one of the highest rate constants.



William Conway, Debra Fernandes, Robert Burns, Geoffrey Lawrance, Graeme Puxty and Marcel Maeder J. Phys. Chem. A, 2013, 117, 806-13





#### **Amino acids**



An important and often detrimental property of amines considered for PCC is the volatility. It is crucial that no significant amount of amine is lost at the top of the absorber column. Ionic compounds are ideal as their volatility is negligible. Most prominent are amino acids such as glycine or taurine which are zwitter-ionic as the overall neutral molecule:

$$H_3N$$
 $O$ 
 $O$ 
 $O$ 
 $O$ 
 $O$ 



#### **Amino acids**



At high pH amino acids are deprotonated and the free amine group reacts similarly to other neutral amines, acting as a base or in the formation of the carbamate, for the example of taurine:

$$^{\mathsf{T}}SO_{3}CH_{2}NH_{2} + CO_{2} \longleftrightarrow ^{\mathsf{T}}SO_{3}CH_{2}NCOO^{\mathsf{T}} + H^{+}$$

The volatility remains zero.





#### **Amine mixtures**



A relatively recent development is the usage of mixtures of amines; the idea is to combine the relevant properties of more than one amine in such a way that both advantages prevail.

In theory one amine reacts very fast to form the carbamate while the other amine favors the proton exchange reaction and as a result fast reactivity can be combined with the advantageous 1:1 stoichiometry of the base property of at least one of the amines.







There are several possible reactions of CO<sub>2</sub> in aqueous amine solutions:

Reaction with  $H_2O$ :  $CO_2 + H_2O \longrightarrow H_2CO_3$ 

Reaction with  $OH^-$ :  $CO_2 + OH^- \iff HCO_3^-$ 

Reaction with amine:  $RNH_2 + CO_2 \rightleftharpoons RHNCOOH$ 







All these reactions occur simultaneously and they are coupled to several protonation equilibria:

De-protonation of  $H_2CO_3$ :  $H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$ 

 $HCO_3^- \longleftrightarrow H^+ + CO_3^{2-}$ 

Protonation of amine:  $RNH_2 + H^+ \longleftrightarrow RNH_3^+$ 

De-protonation of carbamate:  $RHNCOOH \longleftrightarrow RHNCOO^- + H^+$ 

Autoprotolysis of water:  $H_2O \longleftrightarrow H^+ + OH^-$ 







And there is an additional slow reaction between amine and bicarbonate:

$$RNH_2 + HCO_3 \longrightarrow RNHCOO + H_2O$$

Note that there is also a 'virtual' reaction between amine and carbonic acid:

$$RNH_2 + H_2CO_3 \rightleftharpoons RNHCOOH + H_2O$$

however, due to the relative protonation constants these two species never co-exist to any significant amount and thus the reaction is irrelevant and cannot be investigated experimentally.

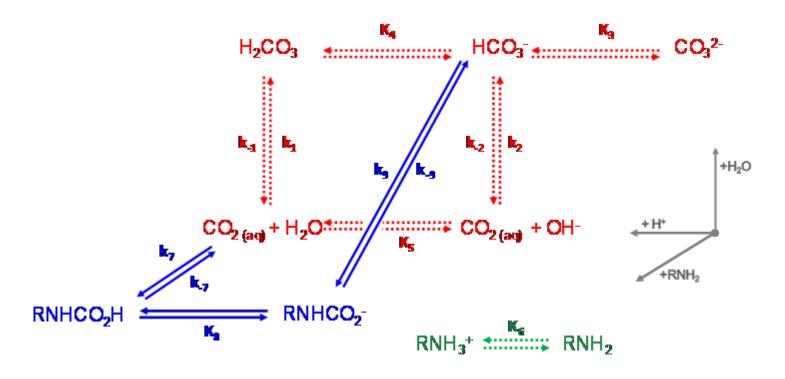






We can write a complete list of all reactions and protonation equilibria:

$$CO_2 + H_2O \Longrightarrow H_2CO_3$$
 $CO_2 + OH^- \Longleftrightarrow HCO_3^ RNH_2 + CO_2 \Longleftrightarrow RHNCOOH$ 
 $RNH_2 + HCO_3^- \Longleftrightarrow RNHCOO^- + H_2O$ 
 $H_2CO_3 \longleftrightarrow H^+ + HCO_3^ HCO_3^- \longleftrightarrow H^+ + CO_3^2$ 
 $RNH_2 + H^+ \longleftrightarrow RNH_3^+$ 
 $RHNCOOH \longleftrightarrow RHNCOO^- + H^+$ 
 $H_2O \longleftrightarrow H^+ + OH^-$ 


However, the list is difficult to 'read'.







The complete mechanism is best represented in a scheme:









As we have seen, a very significant aspect for the overall kinetics of PCC is the mass transfer, the transfer of gaseous CO<sub>2</sub> into the solution.

The establishment of the gas-liquid equilibrium, as defined by Henry's constant is very fast at the surface of the liquid; the diffusion of the dissolved CO<sub>2</sub>(aq) into the solution is much slower.

With reactive amines the dissolved  $CO_2(aq)$  is consumed fast with subsequent fast re-establishment of the gas-liquid equilibrium and fast uptake.

While the physical mixing of the amine solution is important for the continued uptake of CO<sub>2</sub>, the reactivity of the amine plays an important role.

