



# **Future developments**

- New amine based absorbents new formulations and new molecules
- Increasing mass transfer using enzymes (carbonic anhydrase)
- Other catalysts: borate and arsenite
- Amine functionalised ionic liquids
- Amine functionalised hyperbranched polymers
- Phase change absorbents





#### **Future developments**



- The ultimate goal of PCC is the cost and energy efficient separation of CO<sub>2</sub> from the gas stream of a fossil fuel based power station.
- Any evolutionary or revolutionary technique that potentially results in improved performance should be investigated.
- Revolutionary ideas are difficult to generate. In the following a few evolutionary ideas:



#### New amines formulations and new molecules



- Very promising and already commercially exploited are mixed amine solutions.
- As discussed previously, the idea is to combine the strengths of different amines in one absorber solvent:
- A 'fast amine', e.g. piperazine, mixed with a 'high capacity amine', e.g. a tertiary amine.
- At this stage a substantial number of amines have been comprehensively investigated; many more mixtures that are possible and will be analysed in the future.





# Increasing mass transfer using enzymes (carbonic anhydrase)

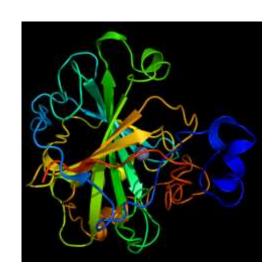


- Enzymes, and more generally catalysts, do not affect the equilibrium nor the net energy requirements of a process; however they can dramatically improve the rate of a particular reaction.
- Carbonic anhydrases catalyse the reaction between CO<sub>2</sub> and H<sub>2</sub>O to form carbonic acid and this rate improvement potentially allows the usage of a smaller, cheaper absorber and possibly also stripper columns.
- Very importantly, catalysts could enable to usage of carbonate absorbers, they are chemically completely stable but suffer from slow absorption kinetics.



Ribbon diagram of human carbonic anhydrase II






# Increasing mass transfer using enzymes



# (carbonic anhydrase)

- Carbonic anhydrases are very large naturally occurring enzymes; they are very efficient but also very fragile.
- Most naturally occurring carbonic anhydrases, are not robust enough to survive the harsh conditions prevalent in absorber and particularly stripper columns.
- Research is directed at identifying naturally occurring carbonic anhydrases that are sufficiently robust.
- Genetic modification of existing enzymes is an alternative approach.



Ribbon diagram of human carbonic anhydrase II





# Other catalysts: borate and arsenate



- Simple inorganic compounds act as catalysts, similar to but much less efficient than carbonic anhydrases. Most prominent are:
- borate, B(OH)<sub>4</sub>-
- arsenite, AsO<sub>2</sub><sup>-</sup>
- Both compounds are known to catalyse the reaction of  ${\rm CO_2}$  with water. They are investigated as potential catalysts in PCC solvents that do not contain reactive amines, e.g. carbonate or tertiary/sterically hindered amine absorbers.





# Amine functionalised ionic liquids



- Ionic liquids have interesting properties that can be very interesting for PCC applications:
  - They can be very stable
  - They are completely non-volatile
  - They can be very good solvents for polar compounds
- Disadvantages include:
  - They are very viscous
  - They accumulate water
  - They tend to be very expensive

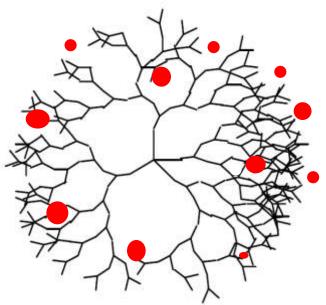




# **Amine functionalised ionic liquids**



- Ionic liquids will not just replace the aqueous solvent; it is possible to incorporate the amine functionality into the components of the ionic liquid.
- A typical example of an ionic liquid is
- 1-butyl-3-methylimidazolium hexafluorophosphate;
- For this ionic liquid, the potential of functionalisation (•) at the butyl group is almost obvious.






# Amine functionalised hyperbranched polymers



- Hyperbranched polymers are a group of polymers with densely branched structures which can incorporate a large number of reactive groups (•), such as amines.
- Advantages such as minimal volatility and potentially high reactivity can be outweighed by high viscosity and potentially low solubility.
- Nevertheless, these molecules are quite novel and thus there is rather little known about their properties. Which also means there is hope.







#### Phase change absorbents



- Phase change undergo a phase separation upon absorption of CO<sub>2</sub>. One phase contains chemically absorbed CO<sub>2</sub> and can be separated from the other phase, giving a concentrated CO<sub>2</sub> phase for regeneration.
- The overall effect is reduced energy requirement for the production of a unit of purified CO<sub>2</sub>.

# Acknowledgements

The authors wish to acknowledge financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low

Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.

**ENERGY TECHNOLOGY** 

www.csiro.au

