

Application in coal fired power stations

- Australian coal fired power station
- Integration into coal fired power plants
- Energy penalty of PCC
- Cost electricity and CO₂-emission avoided

Australian coal fired power stations

- ➤ Generation capacity ~ 28 GW
- ➤ Electricity production 170 TWh/a
- ➤ Average generation efficiency
 - Black coal: 35.6% 0.9 tonne CO₂/MWh
 - Brown coal: 25.7% 1.3 tonne CO₂/MWh
- \triangleright CO₂-emissions \sim 170 Mtonne CO₂/a from \sim 60 flue gas streams
- \triangleright SO₂ levels:
 - Black coal: 200 600 ppm
 - Brown coal: 100 300 ppm
- ➤NO_x levels:
 - Black coal: 300 700 ppm
 - Brown coal: 100 200 ppm
- ➤ Cooling water: 1.5 3.0 m³/MWh
- ➤ Typical flue gas stream: ~2.5 10⁶ m³/h at 120 °C (0.5 GW)

Data used from CCSD – technology assessment report 62

Integration into coal fired power plants

Integration relates to:

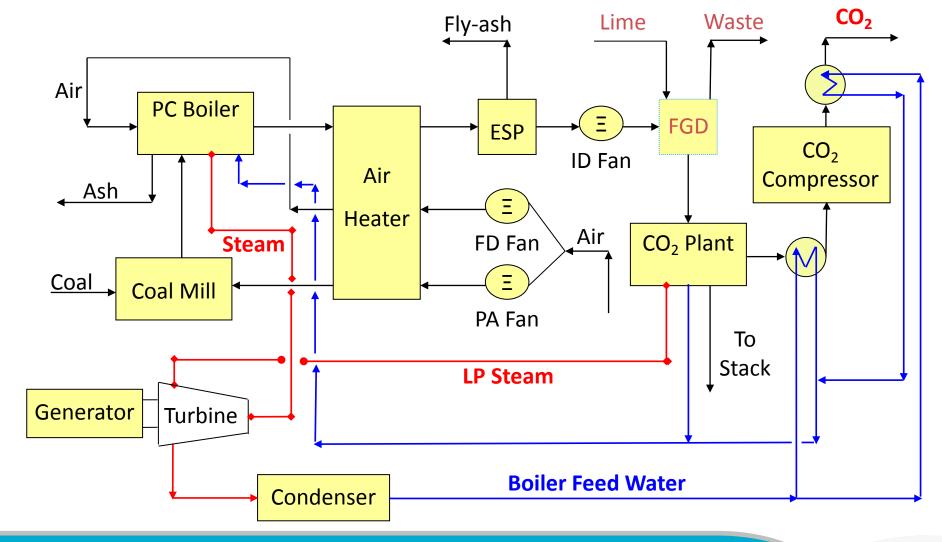
Heat

- Use of a reboiler extracting steam from the power station steam cycle; This
 requires modifications to the steam cycle
- Alternative: Use a separate coal or gas fired boiler to generate the required heat and steam
- Boiler feedwater preheating using heat from capture plant and compressors

Flue gas treatment

- Amine based process will capture all acid gases; not desired
- Pretreatment requirements (SOx, NO_x, etc.)

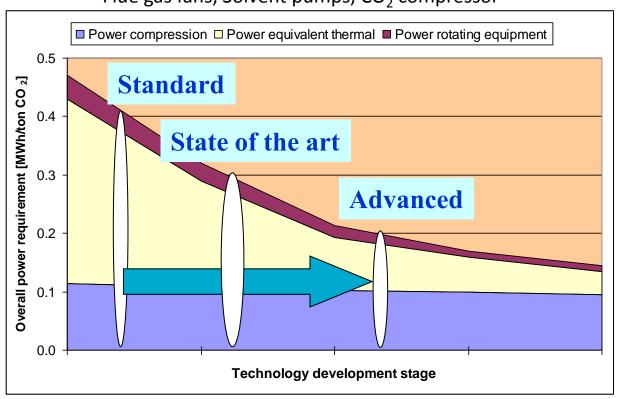
Cooling water


- Additional cooling for PCC plant
- Air cooling is option

CO₂ Capture Process Integration

Energy penalty of PCC

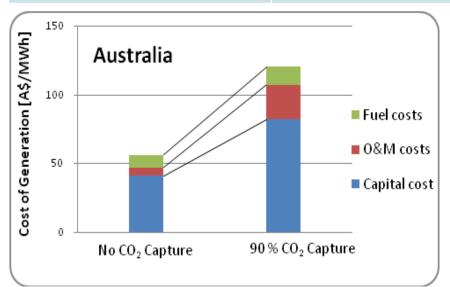
- The total energy requirement for the capture and compression of CO₂ to 100 bar for a state-of-the-art PCC process is ~ 0.3 MWh_e/tonne CO₂.
- At a power plant CO₂ emission of 0.9 tonne CO₂/MWh_e and 90% capture efficiency the penalty is $0.9\times0.3\times0.9 \sim 0.243$ or $\sim 24\%$
- 2/3 of the penalty is due to the capture process; 1/3 is due to compression of CO₂.


5 | Application

Improvement potential in energy performance

- ➤Thermal energy
 - •Regeneration of solvents; Extracted from steam cycle in power plant
- > Electricity
 - •Flue gas fans, Solvent pumps, CO₂ compressor

Derived from Feron, proceedings of GHGT-9, November 2008, Washington



Case study for new power station

	No Capture	90 % Capture
Efficiency (HHV)	38.1 %	28.0 %
CO ₂ - emissions	810 kg/MWh _e	105 kg/MWh _e
Capital costs	2529 A\$/kW _e	5046A\$/kW _e
Generation cost	56.4 A\$/MWh	120 A\$/MWh
CO ₂ Avoided Cost	91 A\$/tonne CO ₂	

➤ Capital costs dominant

Dave N., et al, Energy Procedia 4 (2011) 1869-1877).

Cost of electricity and CO₂-emissions avoided - Summary

- In Australia the cost of electricity generation will roughly double following installation of 90% CO₂ capture (from 56 to 120 A\$/MWh)
- The biggest contribution to cost is capital, followed by operation and maintenance and lastly fuel (coal is cheap)
- In Australia the total estimated cost for CO₂ capture, transport and storage is 80 – 140 A\$/tonne CO₂

P. Feron and L. Paterson, Reducing the costs of CO₂ capture and storage, CSIRO (2011).

8 | Application

Acknowledgements

The authors wish to acknowledge financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low

Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.

ENERGY TECHNOLOGY

www.csiro.au

